Search results for "Ventricular Myosins"

showing 1 items of 1 documents

Paradoxically, iron overload does not potentiate doxorubicin-induced cardiotoxicity in vitro in cardiomyocytes and in vivo in mice

2015

Doxorubicin (DOX) is known to induce serious cardiotoxicity, which is believed to be mediated by oxidative stress and complex interactions with iron. However, the relationship between iron and DOX-induced cardiotoxicity remains controversial and the role of iron chelation therapy to prevent cardiotoxicity is called into question. Firstly, we evaluated in vitro the effects of DOX in combination with dextran-iron on cell viability in cultured H9c2 cardiomyocytes and EMT-6 cancer cells. Secondly, we used an in vivo murine model of iron overloading (IO) in which male C57BL/6 mice received a daily intra-peritoneal injection of dextran-iron (15mg/kg) for 3weeks (D0-D20) and then (D21) a single su…

Malemedicine.medical_specialtyIron OverloadCell SurvivalHeart VentriclesIronCardiomegaly030204 cardiovascular system & hematologyToxicologymedicine.disease_causeCell LineVentricular MyosinsMice03 medical and health sciences0302 clinical medicine[SDV.MHEP.CSC]Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular systemAtrial natriuretic peptideIn vivoCell Line TumorInternal medicineNatriuretic Peptide Brainpolycyclic compoundsmedicineAnimalsMyocytes CardiacDoxorubicinViability assay030304 developmental biologyPharmacology0303 health sciencesCardiotoxicityCell growthChemistryDextransBrain natriuretic peptideCardiotoxicity[SDV.MHEP.CSC] Life Sciences [q-bio]/Human health and pathology/Cardiology and cardiovascular systemUp-Regulation3. Good healthMice Inbred C57BLOxidative Stresscell proliferationEndocrinologyDoxorubicincardiovascular systemOxidative stressmedicine.drugToxicology and Applied Pharmacology
researchProduct